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Abstract

We examine the characteristics of the π/2 pulse for simultaneously rotating
two spin species of different gyromagnetic ratios with the same sign. For a
π/2 pulse using a rotating magnetic field, we derive the equation relating
the frequency and strength of the pulse to the gyromagnetic ratios of the two
particles and the strength of the constant holding field. For a π/2 pulse using
a linear oscillatory magnetic field, we obtain the solutions numerically, and
compare them with the solutions for the rotating π/2 pulse. Application of
this analysis to the specific case of rotating neutrons and 3He atoms simul-
taneously with a π/2 pulse, proposed for a neutron electric dipole moment
experiment, is also presented.
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The π/2 rotation is a commonly used technique in nuclear magnetic res-

onance. A spin ~S with a gyromagnetic ratio γ, pointing along a constant
magnetic field B0 in the ẑ direction, can be rotated into the x̂− ŷ plane by
applying a radio-frequency (rf) magnetic field ~B(t), called a π/2 pulse, in the

direction orthogonal to B0. For a π/2 pulse rotating in the x̂− ŷ plane, ~B(t)

∗Present address: Los Alamos National Lab, P.O. Box 1663, H803, Los Alamos, NM,
87544, USA. Tel.: +1 5056060510

Email address: pchu@lanl.gov (Ping-Han Chu)

Preprint submitted to Elsevier May 26, 2015

http://arxiv.org/abs/1505.06406v1


can be written as

Bx(t) = B1 sin (ωrf t), By(t) = B1 cos (ωrf t), (1)

which represents a magnetic field with frequency ωrf and an amplitude B1.
While ωrf is often chosen to be the same as the resonant Larmor frequency,
ω0 = γB0, off-resonance frequencies could also be used. As discussed below,
this capability to perform a π/2 rotation with off-resonance frequencies makes
it possible to rotate simultaneously two spin species of different gyromagnetic
ratios with a single π/2 pulse of suitable frequency and duration.

The need to rotate two different spin species with a single π/2 pulse is
relevant for the proposed experiment [1, 2, 3] at the Oak Ridge National
Laboratory to search for the neutron electric dipole moment (EDM) using
polarized ultra-cold neutrons stored in a superfluid helium cell containing
polarized 3He acting as a co-magnetometer and a spin-analyzer. A non-zero
neutron EDM can be observed by measuring the difference of the precession
frequencies of neutrons when electric and magnetic fields are aligned or anti-
aligned. The initial polarization directions for neutron and 3He spins are
parallel to a constant B0 field pointing along the ẑ axis. To measure the
precession frequency of neutrons relative to that of 3He, a single π/2 pulse
will be applied to rotate both spins into the x̂− ŷ plane. A superconducting
quantum interference devices (SQUID) will be used to measure the precession
frequency of 3He [4], and the relative precession between neutrons and 3He
can be determined by the rate of the absorption reaction, n + 3He → p + 3H,
which depends sensitively on the relative spin orientations of neutrons and
3He [5]. From the measurements of the precession of 3He and the absorption
reaction of n-3He, the precession frequency of neutrons can be determined.
An alternative method, the dressed spin technique, could also be used to
measure the neutron EDM by applying an additional dressing field [1, 6].

It is not evident that two spin species with different gyromagnetic ratios
could be rotated simultaneously by a π/2 pulse. As shown in this paper, this
is only possible if the ratio of the magnetic moments of the two spin species
falls within a certain range. Vasserman et al. utilized a method to simul-
taneously rotate the spins of electron and positron by 90◦ to measure their
anomalous magnetic moments for a test of CPT invariance [7]. This method
is only applicable for particles with identical magnitude of gyromagnetic ra-
tios. Recently, de Lange et al. published a new method to manipulate two
spin species using the spin echo technique [8]. However, this method requires
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a spin bath which does not exist in many experiments such as the neutron
EDM experiment. It is necessary to consider other methods which do not
require a spin bath. The purpose of this paper is to discuss a method which
is generally applicable to experiments requiring a simultaneous π/2 rotation
for two different spin species.

The rest of this paper is organized as follows. First, we derive the equa-
tions for calculating ωrf and τ as a function of B0, B1, and the gyromagnetic
ratios of two different spin species. Second, we explore the range of these
parameters and the relation between them. Third, we present the numerical
solutions and comment on the characteristics of the solutions. Finally, we
also consider the case for linear rf magnetic fields, which are more readily
implemented than rotating fields, and compare the solutions with those of
rotating rf fields. The application of this study to the specific case of the
neutron EDM experiment involving neutron and 3He will also be presented.
Some initial results obtained by one of the coauthors (JCP) for the case of
rotating rf fields were presented in an unpublished report [2].

In general, the spin motion of polarized particles moving in an exter-
nal electromagnetic field can be described by the Bargmann-Michel-Telegdi
equation [9]. However, for non-relativistic particles, the dynamics of a spin
in a magnetic field system can be described by the Bloch equation [10]:

d~S

dt
= ~S × (γ ~B(t)). (2)

Here we consider a system of polarized particles moving slowly in a cell with a
static magnetic field, B0, parallel to the spin orientation of polarized particles
along the ẑ-axis. Upon the application of the rotating field given in Eq. 1, the
effect on the spin direction of the particles can be conveniently described by
transforming to a frame rotating at ωrf along ẑ. In this rotating frame with

axes defined by the x̂′, ŷ′, and ẑ′ as shown in Fig. 1, the field ~B(t) becomes
static with a magnitude B1 pointing along the ŷ′ axis. The static B0 field in
the ẑ′ axis is changed to B0 − ωrf/γ in this rotating frame and the spins of

the particles will precess about the magnetic field ~Btot given as

~Btot = (B0 −
ωrf

γ
)ẑ′ +B1ŷ

′ (3)

with an effective Larmor frequency

ω′
0 = γ

√

(B0 −
ωrf

γ
)2 +B2

1 . (4)
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Figure 1: (Color figure) Schematic plot of spin rotation using a rotating rf field B1(t)
in the x̂ − ŷ plane with frequency ωrf . The holding field B0 is along ẑ-axis. In a frame

rotating at ωrf along ẑ, the effective field is ~Btot = (B0 −
ωrf

γ
)ẑ′+B1ŷ

′. ~S(0) is the initial

spin orientation and ~S(τ) is the spin orientation after applying a π/2 pulse. ψ is the angle

between ~Btot and ŷ
′ and φ the angle between ~S(τ) and x̂′.

The angle ψ between the directions of ~Btot and ŷ
′ satisfies

tanψ =
B0 − ωrf/γ

B1

=
B0

B1

(1−
ωrf

γB0

). (5)

It is convenient to define another coordinate system (x̂
′′

, ŷ
′′

, ẑ
′′

) obtained
from a rotation along the x̂′ axis by an angle ψ such that ŷ

′′

is along the
direction of ~Btot:





x̂
′′

ŷ
′′

ẑ
′′



 =





1 0 0
0 cosψ sinψ
0 − sinψ cosψ









x̂′

ŷ′

ẑ′



 . (6)

The spin of the particle is initially along the ẑ′-axis. At a later time t, it can
be expressed as

~S(t) = ~S‖(t) + ~S⊥(t), (7)
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where ~S‖(t) is the component parallel to ~Btot and is independent of time,

~S‖(t) = |~S| sinψŷ
′′

. (8)

~S⊥ is the component perpendicular to ~Btot and will rotate about ~Btot so that

~S⊥(t) = (|~S| cosψ)(cos (ω′
0t)ẑ

′′

− sin (ω′
0t)x̂

′′

). (9)

Using Eqs. 6- 9, ~S(t) can be expressed in terms of the coordinates in the
rotating frame as

~S(t) = ~S‖(t) + ~S⊥(t)

= |~S|(sinψ)ŷ
′′

+ (|~S| cosψ)(cos (ω′
0t)ẑ

′′

− sin (ω′
0t)x̂

′′

)

= |~S|[− cosψ sin(ω′
0t)x̂

′ + sinψ cosψ(1− cosω′
0t)ŷ

′

+ (sin2 ψ + cos2 ψ cosω′
0t)ẑ

′]. (10)

For an rf pulse to rotate the spin from the vertical axis to the horizontal
plane after a duration τ , the component of ~S(τ) along ẑ′ must vanish:

~S(τ) · ẑ′ = sin2 ψ + cos2 ψ cosω′
0τ = 0. (11)

We can readily obtain the solutions for ωrf and τ to rotate two spin
species of different gyromagnetic ratios by π/2 simultaneously. Due to the
property of the cos function, the sign of ω′

0 does not change the solution of
τ ; this implies the solution of τ is suitable for both positive and negative
ω′
0 as well as γ. Denoting the gyromagnetic ratios for the two spin species

as γ1 and γ2, and their Larmor frequencies as ω0,1 = γ1B0 and ω0,2 = γ2B0,
the requirement is to have the same duration, τ , with a given frequency to
simultaneously rotate both species by π/2. Therefore, we obtain:

τ =
cos−1(− tan2(ψ1))

|ω′
0,1|

=
cos−1(− tan2(ψ2))

|ω′
0,2|

(12)

where ω′
0,i and ψi are the effective Larmor frequency and ψ angle for species

i in Eq. 4 and Eq. 5, respectively. The range of cos−1(− tan2(ψ)) is from 0
to π in order to keep τ positive.

The solutions for ωrf must also satisfy the following constraint:

− 1 ≤ tanψi ≤ 1,
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i.e.

− 1 ≤ (
B0

B1

)(1−
ωrf

γiB0

) ≤ 1, (13)

implying

1−
B1

B0

≤
ωrf

γiB0

≤ 1 +
B1

B0

. (14)

It is also noted that after the application of a π/2 pulse, the spin directions
of the two species on the x̂ − ŷ plane would in general be different. Using
Eqs. 10 and 11, the azimuthal angle φi of the spin for species i after a π/2
rotation is given as

φi = tan−1(
sinψi cosψi(1− cosω′

0,iτ)

− cosψi sinω′
0,iτ

) = − tan−1(
1

√

cot2 ψi − 1
). (15)

Therefore, the spins of the two species are usually not aligned (φ1 6= φ2) right
after the π/2 pulse.

Equation 12 can be solved numerically to find ωrf for given values of
B0, B1, and γi. Because the gyromagnetic ratios of neutron and 3He are both
negative, we focus on the case of both spin species having gyromagnetic ratios
of the same sign in this paper. We note that Eq. 12 is also applicable for the
case of two spin species having gyromagnetic ratios of opposite signs. For
convenience, we define dimensionless parameters if both gyromagnetic ratios
are in the same sign: R = γ1

γ2
, x = B0

B1

and y =
2ωrf

ω0,1+ω0,2
. Fig. 2(a) shows the

solutions for y as a function of x for three different values of R. We only
consider the case for R ≥ 1, since the R ≤ 1 case simply corresponds to
interchanging the two spin species. We first note that for a given value of
R (R ≡ γ1/γ2), a solution for ωrf can be found only within a certain range of
x. This range becomes narrower as R increases, and above certain value of
R, there is no longer a solution for ωrf . The domain in R versus x for which
a solution for ωrf exists is shown as the red region in Fig. 2(b).

Figure 2(a) also shows that the solutions for y at different values of R
have very similar shapes. It is interesting to study the phenomena when R
approaches 1 (but not equal to 1). Inserting R ≈ 1 + δR into Eq. 12 and
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ignoring higher-order terms in δR, the solution for y versus x when R → 1 is

cos−1(x2(−1 + y)2)

=π −
2(x2y(1− y))

1 + x2(1− y)

√

1 + x2(1− y)2

1− x2(1− y)2
, (16)

shown as the black-dashed curve in Fig. 2(a). However, when R = 1, corre-
sponding to the degenerate case of a π/2 rotation for only a single species,
the solution is given by Eq. 14, shown as the yellow region in Fig. 2(a). This
abrupt change from a curve to a band for the solution of Eq. 12 reflects the
degeneracy occurring at R = 1.

The solution for the specific case of rotating neutron and 3He simultane-
ously with a π/2 pulse, relevant for a proposed neutron EDM experiment [2],
is shown in Fig. 3. The black-dashed curve in Fig. 3(a) gives the solution for
y versus x at R = γ3/γn = 1.1121, where n and 3 represent neutron and 3He,
respectively. Figure 3(b) and (c) also show solutions of the duration τ from
Eq. 12 and the angular difference of spins of two species after a π/2 rotation,
∆φn3 = φn − φ3, from Eq. 15. Also shown in Fig. 3 are the solutions for
linear rf fields, to be discussed next.

The study so far assumes a rotating rf field. However, a linear rf field is
commonly utilized in experiments due to its simplicity to implement. There-
fore, we extend our study to the case of a linear rf field, which can be de-
composed in terms of two rotating components:

Brf (t) = 2B1 cos(ωrf t)ŷ (17)

= B1(sin(ωrf t)x̂+ cos(ωrf t)ŷ) +B1(− sin(ωrf t)x̂+ cos(ωrf t)ŷ)

The first component corresponds to the rotating field we have considered,
which is stationary in the rotating frame. The second component rotates
with a frequency of −2ωrf in the rotating frame. To assess the effect of

this high frequency term, we have solved the time dependence of ~S numeri-
cally using the Bloch equation (Eq. 2). We have considered the specific case
for neutron and 3He with the gyromagnetic ratio −18.32472 and −20.37895
Hz/mG, respectively, and with B0 at 10 mG. The Runge-Kutta method is
applied and the time step of the simulation is ∆t = 10−6 sec. In order to
determine a single π/2 pulse for both neutron and 3He, the following algo-
rithm is applied. Initially, both neutron and 3He spins are along the ẑ-axis.
Using the numerical simulation of the Bloch equation for a given x = B0

B1

and
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y =
2ωrf

ω0,1+ω0,2
, we derive the duration τ when the neutron spin is rotated into

the x̂− ŷ plane, i.e., the ẑ-component of the neutron spin becomes zero. In
practical terms we derive the duration when the ẑ-component of the neutron
spin changes its sign, from a positive value to a negative value. Although
the spin is wobbling, we just use the first point when the neutron spin is
rotated into the x̂ − ŷ plane. Then, at τ , we consider the difference of the
ẑ-component between the spins of neutron and 3He. For a given x = B0

B1

, we

vary y =
2ωrf

ω0,1+ω0,2
until the difference of the ẑ-component between the spins

of neutron and 3He changes sign. Using this algorithm, we can derive the
solutions of the linear rf fields for the simultaneous π/2 rotation of neutron
and 3He.

Fig. 4 shows an example of a π/2 pulse for neutron and 3He using a linear
rf field. The vertical components of the spins of the two species as a function
of time are shown as red-solid and green-dotted curves for neutron and 3He,
respectively. The oscillatory pattern in these two curves has a frequency of
∼ 2ωrf . Fig. 4 shows that the both spins can be simultaneously rotated to
the x̂− ŷ plane with the linear rf field.

In Fig. 3(a), the solutions using the Bloch equation are shown for both
rotating and linear rf fields. Significant difference between the two cases is
observed for smaller values of B0/B1. At large values of B0/B1, the effect
of the high-frequency counter rotating term could be neglected. The time
duration τ and the angular difference after π/2 pulses for R = γ3/γn are also
shown in Fig. 3(b) and (c). They show that the results of the time duration
in Eq. 12 and the angular difference in Eq. 15 are consistent with those of
numerical simulation using Bloch equation for rotating rf fields. The results
for linear rf fields follow those for rotating rf fields, but with an oscillatory
pattern superimposed.

In summary, we have studied the solutions for π/2 pulses for two spin
species of the same-sign gyromagnetic ratios using rotating and linear rf
fields. The characteristics of the solutions are presented. For a specific
experiment, the selection of the optimal values of B0, B1 could depend on
various considerations. This study provides the solution for ωrf , once the
values of B0, B1 are chosen. The application of this work to a neutron EDM
experiment [2] is also discussed. Finally, this study can be extended to the
case of two spin species having gyromagnetic ratios of opposite signs.

We gratefully acknowledge valuable discussions with Bradley W. Filip-
pone and Riccardo Schmid. This work was supported by the U.S. National
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Science Foundation and the Department of Energy.
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Figure 2: (Color figure) Solutions of the π/2 rotation for two spin species. (a) y =
2ωrf/(ω0,1+ω0,2) versus x = B0/B1 for different R = γ1/γ2. The yellow region shows the
constraint of the π/2 rotation for a single spin species according to Eq. 14. (b) R = γ1/γ2
versus x = B0/B1. All values in the red region can be used for π/2 pulses.
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Figure 3: (Color figure) Solutions of the π/2 pulses for neutron and 3He, i.e., R = γ3/γn.
The holding field B0 is 10 mG along the z-axis. (a) y = 2ωrf/(ω0,1 + ω0,2) versus x =
B0/B1. (b) Time duration τ versus B0/B1. (c) The angular difference, ∆φn3, between
spins of neutron and 3He after the π/2 pulses. The black-dashed curves and the red-solid
curves are solutions for rotating rf fields using the analytical equations (Eqs. 12 and 15)
and the Bloch equation, respectively. The results from these two approaches are identical.
The green-dotted curves are obtained using Bloch equation simulation with linear rf fields.
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Figure 4: (Color figure) The time dependence of Sz for neutron and 3He with a linear rf
field. The red-solid and green-dotted curves are neutron and 3He, respectively. B0 is 10
mG along the ẑ-axis, and the black-dashed curve shows the amplitude and frequency of
the linear rf field, Brf (t), defined in Eq. 17. (x = B0/B1 = 17, y =

2ωrf

ω0,1+ω0,2
= 0.989596)
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